Tipos de óvulos

Chegada dos espermatozoides.
Os óvulos dos animais são geralmente células grandes e imóveis, que contém em seu interior reserva de nutrientes para o desenvolvimento do embrião. Esses nutrientes compõem o vitelo. A quantidade e a localização do vitelo são variáveis nos diferentes óvulos. Essas duas características permitem-nos classificá-los em vários tipos:

  • oligolécito (oligo = pouco; lecito = vitelo), homolécito ou isolécito (homo ou iso = igual) — possui pouco vitelo homogeneamente distribuídos e sua segmentação é total ou holoblástica (holo = todo; blasto = germe) e igual, pois origina uma mórula com blastômeros de tamanhos aproximadamente iguais; é o ovo dos protocordados (anfíoxo e ascídia) e de muitos invertebrados marinhos, como esponjas, corais e estrelas-do-mar.

Representação de óvulo oligolécito/ alécito

  • alécito (a = sem) – semelhantemente aos oligolécitos, mas praticamente sem vitelo. Muitas vezes são classificados como oligolécitos ou isolécitos. Sua segmentação é total ou holoblástica (holo = todo; blasto = germe) e igual, pois origina uma mórula com blastômeros de tamanhos aproximadamente iguais.

  • heterolécito (hetero = diferente) - apresenta quantidade de vitelo intermediária entre a dos ovos oligolécitos e telolécitos (daí os outros nomes: mesolécito ou mediolécito) e concentrada mais no pólo vegetal ou vegetativo que no pólo animal (região superior); a segmentação é total e desigual, pois, por ter menos vitelo, o pólo animal divide-se mais rapidamente e produz células menores e mais numerosas que as produzidas no outro pólo; é o ovo de anfíbios, de vários peixes e de alguns invertebrados (maioria dos moluscos, poliquetas e platelmintos).
Representação de um óvulo heterolécito.

  • telolécito (telo = ponta) ou megalécito (mega = grande) - o núcleo e o citoplasma formam uma pequena gota sobre uma quantidade enorme de vitelo (também chamado de gema, neste caso); a segmentação é meroblástica (mero = parte) ou parcial e discoidal – pois ocorre apenas no pólo animal e forma um pequeno disco de células (cicatrícula),encravado na gema; é o ovo de répteis, aves, vários peixes e de alguns moluscos e mamíferos ovíparos (ornitorrinco e equidna).

Representação de um óvulo telolécito.

  • centrolécito - o vitelo ocupa a região central da célula e não se divide; o núcleo divide-se várias vezes no interior do vitelo e migra para a periferia, seguindo-se a divisão do citoplasma; a segmentação é meroblástica e superficial; é o ovo da maioria dos artrópodes (insetos e outros).

Representação de um óvulo centrolécito.

Placenta

Placenta humana.
Na maioria dos mamíferos, o desenvolvimento embrionário ocorre no interior do corpo materno, dentro de um órgão musculoso, o útero.

Excetuando os mamíferos que botam ovos (ornitorrinco e equidna), todos os demais formam a placenta, órgão constituído pela parede interna vascularizada do útero (endométrio) e por estruturas derivadas do trofoblasto ou trofoderme embrionário (nos mamíferos, nome dado à câmara mais externa de revestimento do embrião). Alimentos, oxigênio, anticorpos e hormônios passam do sangue materno para o embrionário, pela placenta, que, em troca, transfere para a mãe as excretas e o gás carbônico.


No homem, o ovo é do tipo oligolécito e a segmentação (clivagem) é total e igual, logo se formando a fase de mórula. Atingida essa fase, o embrião ingressa na cavidade uterina. 

No interior dessa cavidade, surge a fase correspondente a blástula, que, nos mamíferos, é denominada blastocisto. Nesse estágio, o embrião é dotado de uma camada externa de células, o trofoblasto, que envolve um aglomerado interno de células, a massa celular interna. Cabe a essa massa celular a formação do corpo do embrião, enquanto o trofoblasto será o responsável pela penetração do embrião no interior do endométrio (a camada interna da parede uterina), e pela organização da parte embrionária da placenta.


No embrião humano, o trofoblasto e a mesoderme extra-embrionária formam o cório. Esse duplo revestimento é responsável pela organização das vilosidades coriônicas, que invadem o endométrio uterino; o blastocisto, então, aprofunda-se nesse endométrio. À medida que a invasão prossegue, os vasos e glândulas do endométrio podem ser corroídos por enzimas embrionárias e o sangue materno acaba jorrando nas lacunas que estão se formando. Essas lacunas fornecem a nutrição inicial e oxigênio ao embrião. No entanto, os sangues materno e embrionário não se misturam. Existe uma barreira separando-os, constituída pela parede das vilosidades.

Como se pode notar, a placenta é construída com a participação de tecidos maternos e embrionários. Ao contrário do que poderia pensar, a placenta não envolve o embrião. 

Essa função é exercida pelo âmnio (bolsa d’água), dentro do qual o embrião fica imerso. Esse anexo é muito desenvolvido nos mamíferos. O cório adere ao âmnio e ambos contornam a cavidade amniótica, preenchida pelo líquido amniótico.


Nos mamíferos placentários, o saco vitelínico e o alantoide possuem pequeno tamanho e deixam de exercer a função desempenhada em aves e répteis. Contribuem, no entanto, para a formação do cordão umbilical, uma espécie de pedúnculo que liga a placenta ao embrião e é forrado pela membrana do âmnio, que reveste o saco vitelínico e a alantoide regredidos. No interior do cordão umbilical, duas artérias conduzem sangue do embrião para a mãe, enquanto uma veia transporta sangue em sentido contrário.

As três consequências da fecundação

A primeira consequência da fecundação é o restabelecimento da diploidia. O espermatozoide é haploide e o óvulo também. Logo, a mistura dos lotes cromossômicos de ambos forma uma célula diploide, a célula-ovo ou zigoto.

A segunda consequência é a determinação do sexo, uma ocorrência particularmente importante nos mamíferos.

A terceira consequência da fecundação é que ela desencadeia uma série de eventos que permitirão o desenvolvimento do zigoto em um futuro embrião