Panspermia



Quando falamos em origem da vida, sempre há muitas dúvidas e teorias. Uma das mais conhecidas e aceitas é a da evolução química, que propõe que a vida surgiu nos oceanos da Terra primitiva. Porém, diversas pesquisas sugerem que as substâncias que contribuíram para a formação das primeiras formas de vida podem ter chegado ao planeta, e não terem sido formadas aqui. Essa é a chamada Panspermia Cósmica.

Segundo a teoria da Panspermia Cósmica, existiram partículas de vida que teriam caído na Terra acompanhadas de cometas e meteoros. Essas partículas seriam como esporos prontos para germinar. Acredita-se que essa hipótese tenha sido proposta inicialmente no século V a.C., na Grécia, por Anaxágoras.

A teoria foi novamente posta em discussão por volta de 1879 pelos trabalhos de Hermann von Helmholtz e William Thomson, que afirmavam a possibilidade de meteoros servirem de meio de transporte para as formas de vida encontradas no espaço. Svante Arrhenius também contribuiu muito para a teoria. Ele sugeriu que os esporos poderiam ser transportados no espaço pela pressão da radiação emitida por estrelas.

Fred Hoyle, ao estudar as galáxias, verificou que seria possível que bactérias viajassem pelo universo. Ele observou que na poeira espacial havia compostos de carbono e água, sendo que esta refletia determinado espectro de luz, que era coincidentemente o mesmo que as bactérias refletiam. Quando expôs sua teoria em 1979, muitos pesquisadores ficaram céticos em relação à teoria.

Diversos trabalhos continuaram tentando confirmar a teoria da Panspermia. Dentre eles, destacaram-se o de Orguiel, os de Murchison e de Allend, que verificaram aminoácidos em porões de meteoritos. Esses aminoácidos poderiam ter sido trazidos à Terra e terem se tornado componentes dos oceanos primitivos após sua liberação. Acredita-se que esses meteoros chocavam-se com a água e liberavam aminoácidos no processo de hidrólise.

Essa teoria ganhou mais força com a descoberta da presença de substâncias orgânicas oriundas de outros locais do espaço, como o formaldeído, álcool etílico e alguns aminoácidos. A descoberta de um meteorito na Antártica, na década de 80, contendo um possível fóssil de bactéria também reforça a panspermia.

Para muitos, aceitá-la apenas responderia sobre o surgimento da vida na Terra tornando, ainda, obscura a resposta acerca de como ela se formou, realmente. Além disso, muitos cientistas argumentam sobre a possibilidade quase negativa de seres extraterrestres atravessarem os raios cósmicos e ultravioletas sem serem lesados.

A seguir, duas linhas dessa teoria que são discutidas atualmente:


NOVA PANSPERMIA

Para essa versão, formulada por Fred Hoyle e Chandra Wickramasinghe, a matéria está constantemente sendo formada. Assim, há vida em todo o universo, nas nuvens interestelares, chegando à Terra a partir do núcleo de cometas.

A nova panspermia aponta, também, que os vírus podem ter vindo diretamente do espaço e que a evolução pode se dar pela incorporação de material genético oriundo de outros planetas.

Em suas pesquisas, estes cientistas constataram, na poeira interestelar, a presença de polímeros orgânicos complexos semelhantes à celulose – o que poderia ser uma evidência.


PANSPERMIA DIRIGIDA

Francas Circo e Lesei Orle, autores desta abordagem, defendem que seres inteligentes de outras galáxias colonizaram vários planetas, inclusive o nosso, deixando como prova de sua presença o molibdênio - elemento essencial para o funcionamento de determinadas enzimas, mas bastante raro em nosso planeta.

Francis Crick (aquele da descoberta da dupla hélice do DNA) e Leslie Orgel propuseram, também, que esporos transportados por uma nave espacial chegaram à Terra por vontade de seres extraterrestres inteligentes.


Conclusão:

Por mais confusa ou absurda que possa parecer, a panspermia ainda não foi refutada e causa fascínio, principalmente naqueles que gostam de ficção científica.

Essa teoria apresenta ainda diversas dúvidas, tais como: De que forma esses micro-organismos viajaram pelo espaço, suportando todas as suas adversidades? Além disso, como eles foram formados em outros locais?

Exercícios Equilíbrio Hardy-Weinberg



Para exemplificar o que foi dito no post anterior, veja dois exercícios resolvidos a respeito do equilíbrio de Hardy-Weinberg:


1. (VUNESP) Em uma população em equilíbrio, constituída por 1000 indivíduos, 160 apresentam uma anomalia hereditária causada por um gene recessivo autossômico. Espera-se que sejam portadores desse gene recessivo, entre os indivíduos normais, o total de:

a) 480 indivíduos

b) 240 indivíduos

c) 160 indivíduos

d) 560 indivíduos

e) 840 indivíduos


Resolução

Se 160 indivíduos apresentam a anomalia, temos 16% dos indivíduos afetados:

q2 = 0,16

q = 0,4

Como p + q = 1, temos que:

p = 1 – q

p = 1 – 0,4

p = 0,6

O exercício pede que se encontre o número de indivíduos portadores do gene, ou seja, o número de indivíduos heterozigotos. Para calcular essa frequência, temos que:

F (Aa) = 2pq

F(Aa) = 2.0,6.0,4

F(Aa) = 0,48

Assim, a resposta é a alternativa a, pois 48% de 1000 indivíduos equivalem a 480 indivíduos.



2. (UFPI) Em 1908, os cientistas Hardy e Weinberg formularam um teorema cuja importância está no fato de estabelecer um modelo para o comportamento dos genes nas populações naturais. Se os valores das frequências gênicas de uma população, observada ao longo de gerações, forem significativamente diferentes dos valores esperados por meio da aplicação do teorema, pode-se concluir corretamente que:

a) A população estudada é infinitamente grande, inviabilizando a aplicação do teorema.

b) Não houve a atuação dos fatores evolutivos sobre a população.

c) A população encontra-se em equilíbrio genético.

d) A população está evoluindo, uma vez que as frequências gênicas foram alteradas.

e) Os cruzamentos nessa população ocorrem ao acaso.


Resolução

O exercício pede uma definição bastante simples relacionada ao equilíbrio de Hardy-Weinberg. Considerando que uma população em equilíbrio não está sofrendo a ação de fatores evolutivos, podemos concluir que, se os valores das frequências forem diferentes dos valores esperados, a população está evoluindo. A resposta, portanto, é a alternativa d.



3. (ENEM) Uma população encontra-se em equilíbrio genético quanto ao sistema ABO, em que 25% dos indivíduos pertencem ao grupo O e 16%, ao grupo A homozigotos. Considerando que: p = frequência de IA; q = frequência de IB; e r = frequência de i, espera-se encontrar:



A porcentagem de doadores compatíveis para alguém do grupo B nessa população deve ser de:

a) 11%.

b) 19%.

c) 26%.

d) 36%.

e) 60%